NetCORE Solutions Pvt. Ltd.

[2FA- APl DOC]

Missed call for authentication

Version Created by Reviewed by

1.0 Vivek P. & Gaurav Paneri Sridhar P.

Contents

R Ol oY =] = =T o [P 3
00 T o Yo [T o o T UPUPR 3
O ST (o Yo TU IR =1 o S SRRPPRP 3
T I - QAW o 1= o PSRRI 3
1.4 2fa API OVErvieW :: BaSiC CONCEPLS ...ueiiiiiiiieeeiiiieeeciiteeeeeitteeeestreeeesssbaeeesesseeeesssseeeeeanssasesssssneenanns 3
1.5 2fa API Overview :: AULNENTICATIONcci i e e e e e e e e e e eeaas 4
1.6 SENAING REGUESESuvieiiieiee i ettt e e et e e e e e e e st e e e e e e e e sssnetraaeeeeeesesansetaeeeeaesesannsssnneeeesesannnns 4
I A D | = W o] 1 4 I 1 £SO USSP P PO PPPPPTPPPR 4

B O 1T =28 o o = A USRS 4
% I o1 o Yo ¥ Tt o o YU 4
DA A o 1= oY u A2 g Yoo TU Y o o U SS 4
DG B AU 1 o T=T o oF | o o R 5
P oYV YA (ol o YUT1 [B A - T Lo (U1 o 5
DR A - Y N ol 20 {1 =Y o Vol TS 5

2.5.1 Create SESSION APl .. e e e e e e e e e e 5
PR T A €1 AT =T [o] 2N o PO 7
B T T o1 Y= o = Lol G Y = SRS 8
B SN A o I oY1 T o (=SSR 9
2.6.1 Create SESSION APl ..o eeeees 9
P I €T AT T [o] I o PO PP 10
2.6.3 PINGDACK APl ..ottt e e e e e e e e e e e e e e e e abbbaeeeeeeeeeesnrbaaeaeaeeeennnrnreees 10

K T C o T -Y- | VS 11
3.1 Overview of an Enterprise Application USING 2fa APl........uveeieiiiiieiiiireeeee e 11
3.2 Overview of Request/Response cycle USING 2fa APlcoovveeueeieieeeeeiee ettt eevve e e 12
I TV o T L £ @ 7N U o USSR 12
3.4 WhY dO WE USE DAULN? ...ceeeiiiiieeeeee ettt e ettt e e e e e e s e b b e e e e e e e e sesastrsaeeeeeeeeeeessrrareeeeens 12
3.5 Why dO WE NEEA @ SIZNATUINE?.....eeiiiiieiee ettt ettt e e e eesearreeeeeeeesessntrsaeeeeeeeessansnrrereeeeens 12

3.6 HOW are Signatures VEIIFIEA?.......cuuiiieiee ettt ee s rree e e e e e s et rreeeeeeeesennnrraeeeeeens 13

1. Getting Started

1.1 Introduction
2fa is a web-service which helps Enterprises add two-factor authentication to their applications. This
service uses 'missed call' as the second medium for authentication.

1.2 Before you start
Before implementing 'Two Factor Authentication services' for your Enterprise application, you must
contact the netCORE admin and register your application.

As part of the registration process you will receive the following:

e Secured2fa key:: This public key is used by netCORE to identify your application.
Note:: This key is to be sent in each request to netCORE's API.

e Secret key:: This private key will be known only to your enterprise and netCORE. It is used in
the encryption of a signature that is used to secure communication between your enterprise
and netCORE.

Note:: This key is NOT TO BE SENT in any request to netCORE's API.

e Origin code :: This is the number on which your enterprise applications end-users will send
missed calls to. E.g. 022- 3025XXXX

1.3 Target Audience

The target audiences for this document are:-
e Application development teams of Enterprises, who will implement this web-service in their
applications.
e Quality Assurance teams of Enterprises, who will verify the implementation of this web-service
in their application.

1.4 2fa API Overview :: Basic Concepts

1. What is Two factor authentication?

Two-factor authentication is an approach to authentication which requires the presentation of two
authentication factors:

e A knowledge factor ("something the user knows") :: a password
e A possession factor ("something the user has”) :: hardware tokens, mobile phones

2. Why should an Enterprise use Two factor authentication to their product/service?

Even if passwords are stolen or hacked, the attacker cannot log in with these passwords without the
second tokens.

3. What is netCORE's proposition?

Adds a second factor to your password-enabled applications by using a missed call as 2nd factor of
authentication.

1.5 2fa APl Overview :: Authentication

netCORE uses OAuth Version 1.0a for securing communication between itself and enterprises. Details
about OAuth Versionv1.0a can be found here: http://oauth.net/core/1.0a/

Note :: All implementations of the '2fa API' must use OAuth Version 1.0a.

1.6 Sending Requests

The '2fa APl V1.0' supports the POST method of sending requests to the 2fa server:
The URI is: https://2fa.co.in/api/

1.7 Data Formats
Each request or response body will contain XML data which should be passed as RAW POST DATA.

2. Using the API

2.1 Introduction
While using 2fa, enterprise applications will have to submit a request through the <Create Session
API>. The application can get a response by either of two methods i.e. (PULL or PUSH)
e To get a response using PULL method, the application will have to call <Get Session AP|>
e To get a response using PUSH method, enterprises will have to provide their <Pingback API> to
the netCORE admin at the time of registration.
e <Pingback API> will be called by netCORE on receiving a missed call for a request.

2.2 Identifying your App

netCORE uses the secured2fakey to identify your application. Each request from your application
should contain the following:

Identification Parameter:

http://oauth.net/core/1.0a/
https://2fa.co.in/api/

<secured2fakey>32 bit secured 2fa key</secured2fakey>

2.3 Authentication

netCORE uses a signature to verify if a request is valid or not. Each request from your application
should contain the following:

Authentication Parameters:

<signature>A 32-bit unique hash</signature>

<signaturemethod>HMAC-SHA1, HMAC-RSA1 or PLAIN-TEXT</signaturemethod>

<nonce>A unique hash</nonce>

<timestamp>current time stamp of your application</timestamp>

2.4 How to build a 2fa request?

1. The first step is creating a signature.

A signature is a string of 'key=value' pairs separated by '&'. It is encrypted using OAuth Version
1.0a. The keys required to build the string are described below:

e secured 2fa key
e secret key
e signature method

2. Once you have created a signature, you need to create a request body in XML with the
required parameters specified in the API reference.

2.5 2fa API Reference

2.5.1 Create Session API
Method URL
POST https://2fa.co.in/api/createSession
Request
Type Params Values
POST msisdn number (10digit)
POST 2fasecuredkey string
POST origincode number

https://2fa.co.in/api/createSession

POST timestamp number
POST signature string
POST nonce string
POST signaturemethod string
Syntax

<?xml version='1.0'?>

<request>

<msisdn>Mobile Number</msisdn>

<origincode>Origin Code</origincode>

<secured2fakey>A 32 bit secured 2fa key</secured2fakey>
<nonce>A unique hash</nonce>

<signature>A 32 bit unique hash</signature>
<signaturemethod>Signature Method Used</signaturemethod>
<timestamp>Current time stamp of your application</timestamp>

</request>

Response

Status

Response

200

<status>0K</status>
<message>Session has been created</message>

400

<status>NOK</status>
<message>Authentication Failed</message>

402 <status>NOK</status>
<message> Invalid Request</message>
404 <status>NOK</status>
<message> Invalid Secured 2FA key</message>
405 <status>NOK</status>
<message>Your Secured 2FA Key Is Inactive</message>
406 <status>NOK</status>
<message>Invalid Origin Code</message>
408 <status>NOK</status>
<message> Invalid Signature</message>
500 <status>NOK</status>
<message> Internal Server Error</message>
Syntax

<? xml version="'1.0'?>

<response>

<statuscode>200</statuscode>
<status>OK</status>
<message>Session has been created</message>

<sessid>32 bit session id</sessid>
<secured2fakey>A 32 bit secured 2fa key</secured2fakey>
<nonce>A unique hash</nonce>
<signature>A 32 bit unique hash</signature>
<signaturemethod>Signature Method Used</signaturemethod>
<timestamp>Current time stamp of your application</timestamp>

</response>

2.5.2 Get Session API
Method URL
POST https://2fa.co.in/api/getSession

Request
Type Params \Values
POST sessid String
POST secured2fakey String
POST timestamp number
POST signature string
POST nonce string
POST signaturemethod string
POST authtoken string

Syntax

<?xml version='1.0"?>
<request>
<sessid>32 bit session id</sessid>
<secured2fakey>A 32 bit secured 2fa key</secured2fakey>

<nonce>A unique hash</nonce>
<signature>A 32 bit unique hash</signature>
<signaturemethod>Signature Method Used</signaturemethod>
<timestamp>Current time stamp of your application</timestamp>

</request>
Response
Status Response
200 <message>Mobile number verified successfully</message>
<verifystatus>1</verifystatus>

https://2fa.co.in/api/getSession

200 <message> Missed call not received </message>
<verifystatus>0</verifystatus>

200 <message>Missed call not received and session time out</message>
<verifystatus>-1</verifystatus>

200 <message>missed call received but session session timeout </message>
<verifystatus>-2</verifystatus>

405 <status>NOK</status>
<message>Your Secured 2FA Key Is Inactive</message>

500 <status>NOK</status>
<message> Internal Server Error </message>

502 <status>NOK</status>
<message> Session Not Found </message>

Syntax

<? xml version='1.0'?>
<response>
<statuscode>Status Code</statuscode>
<status>OK</status>
<message>Mobile number verified successfully</message>
<verifystatus>Verify Status Code</verifystatus>

<msisdn>Mobile Number</msisdn>
<origincode>Origin Code</origincode>
<secured2fakey>A 32 bit secured 2fa key</secured2fakey>

<nonce>A unique hash</nonce>
<signature>A 32 bit unique hash</signature>
<signaturemethod>Signature Method Used</signaturemethod>
<timestamp>Current time stamp of your application</timestamp>
</response>

2.5.3 Pingback API

Method URL

POST <User APl URL>

Response

Status Response

200 <message>Mobile number verified successfully</message>

<verifystatus>Verify Status Code</verifystatus>

200 <message>Missed call received but session time out</message>

<verifystatus>-2</verifystatus>

200 <message>Invalid transaction because of multiple sessions created </message>
<verifystatus>-3</verifystatus>

Syntax

<? xml version='1.0'?>
<response>

<resp>
<statuscode>Status Code</statuscode>
<status>OK</status>
<message>Mobile number verified successfully</message>
<verifystatus>Verify Status Code</verifystatus>
<sessid>32 bit session id</sessid>

<msisdn>Mobile Number</msisdn>
<origincode>Origin Code</origincode>
<secured2fakey>A 32 bit secured 2fa key</secured2fakey>

<nonce>A unique hash</nonce>
<signature>A 32 bit unique hash</signature>
<signaturemethod>Signature Method Used</signaturemethod>
<timestamp>Current time stamp of your application</timestamp>
</resp>

</response>

2.6 APl Examples

2.6.1 Create Session API

Request

<?xml version='1.0"?>

<request>
<msisdn>9876543210</msisdn>
<origincode>9902099020</origincode>
<secured2fakey>8aabbc8a7a36f70a90701c9db4d9</secured2fakey>
<signature>0xde7c9b85b8b78aabbc8a7a36f70a90701</signature>
<signaturemethod>HMAC-SHA1</signaturemethod>
<nonce>b8y7017ht0987</nonce>
<timestamp>398743265</timestamp>

</request>

Response

<? xml version='1.0'?>

<response>
<statuscode>200</statuscode>
<status>OK</status>
<message>Session has been created</message>
<sessid>8aabbc8a7a36f70a90701c9db4d9o</sessid>
<secured2fakey>6543defrdnghtuyterdgfnbtyredytr</secured2fakey>
<signature>0xde7c9b85b8b78aabbc8a7a36f70a90701</signature>
<signaturemethod>HMAC-SHA1</signaturemethod>
<nonce>b8ytrb86mky46cbrf70a907017ht0987</nonce>
<timestamp>398743265</timestamp>

</response>

2.6.2 Get Session API

Request

<?xml version='1.0'?>

<request>
<sessid>8aabbc8a7a36f70a90701c9db4d9</sessid>
<secured2fakey>8aabbc8a7a36f70a90701c9db4d9</secured2fakey>
<signature>0xde7c9b85b8b78aabbc8a7a36f70a90701</signature>
<signaturemethod>HMAC-SHA1</signaturemethod>
<nonce>b8y7017ht0987</nonce>
<timestamp>398743265</timestamp>

</request>

Response

<? xml version="'1.0"?>

<response>
<statuscode>200</statuscode>
<status>OK</status>
<message>Session has been created</message>
<sessid>8aabbc8a7a36f70a90701c9db4d9</sessid>
<secured2fakey>6543defrdnghtuyterdgfnbtyredytr</secured2fakey>
<signature>0xde7c9b85b8b78aabbc8a7a36f70a90701</signature>
<signaturemethod>HMAC-SHA1</signaturemethod>
<nonce>b8ytrb86mky46cbrf70a907017ht0987</nonce>
<timestamp>398743265</timestamp>

</response>

2.6.3 Pingback API

Response

<? xml version='1.0'?>

<response>
<statuscode>200</statuscode>
<status>OK</status>
<message>Mobile number verified successfully</message>
<verifystatus>1</verifystatus>
<sessid>8aabhc8a7a36f70a90701c9db4d9</sessid>
<secured2fakey>6543defrdnghtuyterdgfnbtyredytr</secured2fakey>
<signature>0xde7c9b85hb8b78aabbc8a7a36f70a90701</signature>
<signaturemethod>HMAC-SHA1</signaturemethod>
<nonce>b8ytrb86mky46cbrf70a907017ht0987</nonce>
<timestamp>398743265</timestamp>

</response>

3. Glossary

3.1 Overview of an Enterprise Application using 2fa API

1. Goesto the web page and 2. The app calls the netCORE
fills user ID and password 2fa APl and will pass mobile
number asparameter

> >
3. The page asks for missed call
authentication
Customer
<€ Web
App

Customer | 4 Customer givesa missed call; netCORE

Netcore captures response

L >

5. Netcore calls your APILif useris
authenticated within the session

6. Useris authenticated

€ €

1. End-user goes to your web page and initiates a transaction which requires “Two factor
authentication”.

Your Enterprise application calls our 2fa “Create Session API” with end-user mobile number.
Enterprise Application shows missed call number provided by netCORE admin to the end-user.
End-user will then give a missed call to the number provided.

If the missed call comes within the stipulated time, netCORE can ping an Enterprises APl using
“Pingback API” if the enterprise has registered its APl with netCORE, or the Enterprise can
request status by calling our 2fa “Get Session API”.

SIFSNEN

3.2 Overview of Request/Response cycle using 2fa API
It is a 6 step process which include 3-step on each side i.e. Enterprise and netCORE.

1. Your Enterprise application creates a signature using OAuth and generates an xml request body
as specified by the 2fa API.

2. Upon receiving the request, the 2fa web-service verifies the request using the signature
provided in the request body.

3. After verifying that it is a valid request the web-service will perform the Enterprises requested
operation.

4. The netCORE 2fa web-service will then create a new signature using OAuth and generate the
xml response body as specified by the 2fa API.

5. Upon receiving the response, the Enterprise application will verify the response using the
signature provided in the response body.

6. After verifying that it is a valid response the Enterprise application will parse the response.

3.3 What is OAuth?

OAuth is an open protocol that aims to standardize the way desktop and web applications access a
user's private data. OAuth provides a mechanism for users to grant access to private data without
sharing their private credentials (username/password).

Oauthl is a widely-used, tested, secure, signature-based protocol. The protocol uses a cryptographic
signature, (usually HMAC-SHA1) value that combines the token secret, nonce, and other request based
information. The great advantage of OAuth 1 is you never directly pass the token secret across the
wire, which completely eliminates the possibility of anyone seeing a password in transit. This is the
only of the three protocols that can be safely used without SSL (although you should still use SSL if the
data transferred is sensitive). However, this level of security comes with a price: generating and
validating signatures can be a complex process. You have to use specific hashing algorithms with a
strict set of steps. However, this complexity isn’t often an issue anymore as every major programming
language has a library to handle this for you.

3.4 Why do we use OAuth?

OAuth has been used for encryption as its libraries are available in multiple programming languages,
making it easy for enterprises to adopt.

OAuth consist of library function which can be used to generate consumer signature and other unique
keys like nonce.

3.5 Why do we need a signature?
The signature is used to verify the authenticity of every request / response. It contains keys & values

known only to the Enterprises & netCORE, as well as keys and values shared in the request / response
body.

3.6 How are signatures verified?

The keys & values in the request / response body are mapped to the secured2fakey and secret key
present with the recipient. Then the recipient tries to recreate the signature it received. If the
signatures match then it is a valid request / response.

